Simple Pendulum
Description
Unformatted Attachment Preview
Physics Lab
Time Period of a Simple Pendulum
Link for online lab:
https://phet.colorado.edu/en/simulation/pendulum-lab
OBJECTIVES:
nvestigate the factors affecting time period of a simple pendulum.
etermine gravitational field strength at a location by swinging a simple pendulum and
performing curve fitting on linearized data.
PROCEDURE:
Click on the Intro window.
Click on Stopwatch. Make sure that speed is set to Normal (radio button) and Friction (slider) is
set to None.
Throughout the experiment, do not increase the Amplitude beyond 30 degrees.
Choose Earth in Gravity window for Parts 1, 2 and 3.
Part 1 ime Period vs. Mass ength, Gravity & Amplitude constant
1. Choose constant values for length, gravity and amplitude. Choose mass of the pendulum to be
0.1 kg and measure time for 10 oscillations.
2. Keep length, gravity and amplitude same. Change mass to 0.4 kg and again measure time for 10
oscillations. Repeat this for a total of 6 readings.
(Mass values in kg: 0.1, 0.4, 0.7, 1.0, 1.3, 1.5)
Part 2 ime Period vs. Amplitude ength, Gravity & Mass constant
3. Choose constant values for length, gravity and mass. Choose amplitude of the pendulum to be 5
degrees and measure time for 10 oscillations.
4. Keep length, gravity and mass same. Change amplitude to 10 degrees and again measure time
for 10 oscillations. Repeat this for a total of 6 readings.
(Amplitude values in degrees: 5, 10, 15, 20, 25, 30)
1
2
Part 3 ime Period vs. Gravity mplitude, Length & Mass constant
5. Choose constant values for amplitude, length and mass. Choose Moon from the Gravity drop
down menu and measure time for 10 oscillations.
6. Keep amplitude, length and mass same. Change gravity location to Earth and again measure
time for 10 oscillations. Repeat this for a total of 3 readings.
(Gravity locations: Moon g = 1.63 m/s2, Earth g = 9.81 m/s2, Jupiter g = 26.0 m/s2)
Part 4 ime Period vs. Length mplitude, Gravity & Mass constant
7. Choose constant values for amplitude, gravity and mass. Choose length of the pendulum to be
0.2 m and measure time for 10 oscillations.
8. Keep amplitude, gravity and mass same. Change length to 0.4 m and again measure time for 10
oscillations. Repeat this for a total of 6 readings.
(Length values in m: 0.2, 0.4, 0.6, 0.8, 0.9, 1.0)
GRAPHS:
Plot the following graphs and paste here. All graphs must have a title and axes labeled with
quantities plotted (& units).
a) From Part 1: Period vs. Mass (T vs. M)
b) From Part 2: Period vs. Amplitude (T vs. A)
c) From Part 3: Period vs. Gravity (T vs. g)
d) From Part 4: Period vs. Length (T vs. L)
e) From Part 4: Period2 vs. Length (T2 vs. L)
ANALYSIS:
3
Based on graphs, answer the following questions:
1. From Period vs. Mass graph, does the period appear to depend on mass?
2. From Period vs. Amplitude graph, does the period appear to depend on amplitude?
3. From Period vs. Gravity graph, does the period appear to depend on gravity? What
is the relation between Period and Gravity (directly related or inversely related)?
4. From Period vs. Length graph, does the period appear to depend on length? What
is the relation between Period and Length (directly related or inversely related)?
5. Explain how you can graphically determine g of Earth using Period2 vs. Length
graph? Obtain the value of g by doing a curve fitting and compare it with the
known value of 9.81 m/s2.
??
(Hint: ?? = 2????? )
6. Explain how you can graphically determine length of a pendulum using Period2 vs.
1/ g graph?
DATA TABLE:
Part
#
Run
#
1
1
2
3
Length
Mass
(m)
(kg)
g
2
(m/s )
Time for 10
Time
Amplitude
oscillations
Period
(degrees)
(s)
(s)
4
4
5
6
1
2
3
2
4
5
6
1
3
2
3
1
2
3
4
4
5
6
7
Purchase answer to see full
attachment
Have a similar assignment? "Place an order for your assignment and have exceptional work written by our team of experts, guaranteeing you A results."